Математическая модель и оптимизация параметров работы пластинчатого рекуператора
Аннотация
Дата поступления статьи: 30.12.2013Использование нетрадиционных и возобновляемых источников энергии имеет важное народнохозяйственное значение для энергосбережения. Пластинчатые рекуператоры применяются для повторного использования тепла отходящего воздуха в системе вентиляции зданий. Для повышения энергоэффективности и оптимизации параметров работы пластинчатого рекуператора разработана его функциональная математическая модель. На основании математической модели определен критерий оптимизации и установлены оптимальные режимы функционирования рекуператора вентиляционного воздуха. В результате исследований установлено, что для повышения эффективности работы рекуператора необходим подогрев наружного воздуха перед входом в рекуператор. Для решения этой задачи предлагается использовать грунтовой теплообменник.
Ключевые слова: математическая модель, пластинчатый рекуператор, нетрадиционные источники энергии, оптимизация, энергосбережение
05.13.18 - Математическое моделирование, численные методы и комплексы программ
Важное народнохозяйственное значение для энергосбережения и повышения энергоэффективности имеет использование нетрадиционных и возобновляемых источников энергии (НВИЭ). Строительство энергоэффективного жилья с НВИЭ является актуальным для России [1]. Поэтому необходимо интенсифицировать работы по внедрению для отопления, вентиляции и кондиционирования зданий машин и устройств, которые могут уменьшить энергопотребление при сохранении комфортных условий [2, 3]. Рекуператоры как раз такие устройства, которые применяются для повторного использования тепла отходящего воздуха в системе вентиляции зданий.
Рекуператоры вентиляционного воздуха бывают различными по конструкции: пластинчатыми, роторными, камерными, рекуператорами с промежуточным теплоносителем, рекуператорами – тепловыми трубами [4,5].
Для повышения эффективности работы пластинчатого рекуператора вентиляционного воздуха необходимо использовать его максимальные возможности для возврата тепла отработанного воздуха при оптимальных режимах функционирования.
Разрабатываем функциональную математическую модель процесса работы пластинчатого рекуператора в виде динамической системы, которая выполняет преобразование входных возмущающих и управляющих воздействий в выходные переменные параметры [6]:
Фi ( X, Y, Z, t ) = 0,
где X = [x1, x2, x3, …, xn] t - вектор входных параметров; Y = [y1, y2, y3, …, yn] t - вектор выходных параметров; Z = [z1, z2, z3, …, zn] t - вектор управляющих параметров; t– координата времени.
Принимаем входными параметрами процесса возврата тепла в энергоэффективный дом параметры наружного и удаляемого воздуха, значения которых заранее известны и определяют режим работы пластинчатого рекуператора. Выходными параметрами являются параметры приточного и вытяжного воздуха. Значения выходных параметров определяются режимом процесса работы пластинчатого рекуператора и управляющими параметрами. Управляющие параметры – это переменные характеристики процесса, на которые можно оказывать прямое воздействие в соответствии с требованиями, что позволяет управлять процессом возврата тепла в энергоэффективный дом.
Графическое изображение функциональной математической модели пластинчатого рекуператора представлено на рисунке.
Схема функциональной динамической математической модели пластинчатого рекуператора
Обозначим векторы:
X1 = {tн; Gн; сн; φн} – входной вектор параметров наружного воздуха.
tн - температура наружного воздуха, ºC;Gн – расход наружного воздуха, кг/с; сн – теплоемкость наружного воздуха, Дж/(кг·К); φн – относительная влажность наружного воздуха, %.
X2 = {tу;Gу; су; φу; q1} – входной вектор параметров удаляемого воздуха.tу, ºC – температура удаляемого воздуха; Gу – расход удаляемого воздуха, кг/с; су – теплоемкость удаляемого воздуха, Дж/(кг·К); φу – относительная влажность удаляемого воздуха, %; q1 – тепловой поток, передающийся удаляемым наружному воздуху, Вт.
Y1 = {Gп; сп; φп; q2} – выходной вектор приточного воздуха.
Gп – расход приточного воздуха, кг/с; сп – теплоемкость приточного воздуха, Дж/(кг·К); φп – относительная влажность приточного воздуха, %; q2 – тепловой поток, получаемый приточным воздухом, Вт.
Y2 = {tв;Gв; св; φв} – выходной вектор вытяжного воздуха. tв – температура вытяжного воздуха, ºC;Gв – расход вытяжного воздуха, кг/с; св – теплоемкость вытяжного воздуха, Дж/(кг·К); φв – относительная влажность вытяжного воздуха, %.
Z = {tп; q3; Gк} – вектор переменных управляющих параметров;tн - температура приточного воздуха, ºC; q3 – потери тепла рекуператором в окружающую среду, Вт; Gк – расход конденсата, кг/с.
В соответствие с проведенными исследованиями имеем выражения для функциональной математической модели пластинчатого рекуператора вентиляционного воздуха:
Y1= Ф1 [X1, X2, Z] = Ф1 [tн;Gн; сн; φн;tу;Gу; су; φу; q1; q3 ](1)
Y2= Ф2 [X1, X2, Z] = Ф2 [tн;Gн; сн; φн;tу;Gу; су; φу; q1; q3 ] (2)
На основании разработанной функциональной математической модели пластинчатого рекуператора вентиляционного воздуха переходим к расчету и оптимизации параметров пластинчатого рекуператора с определением целевой функции для нахождения критерия оптимизации.
Главная цель практического использования пластинчатого рекуператора – получение максимума тепла от удаляемого из помещения воздуха при имеющихся технических возможностях рекуператора и физических параметрах наружного и удаляемого воздуха [7, 8].
В соответствии с функциональной математической моделью функционирование пластинчатого рекуператора полностью характеризуется следующими информационными переменными: tн;Gн; сн; φн;tу;Gу; су; φу; q1; q2; q3; tп .
Регламентированными переменными являются: tн;Gн; сн; φн;tу;Gу; су;φу.
Устанавливаем, что оптимизирующей информационной переменной является tп - температура приточного воздуха.
На основании функциональной математической модели пластинчатого рекуператора для расчета используем математический аппарат, который включает в себя систему уравнений, отражающую сущность явлений, протекающих в объекте моделирования, и неравенств, которые определяют область изменения значений независимых переменных. Неравенства являются ограничениями, которые позволяют сформулировать требования, накладываемые на границы изменения характеристик функционирования системы.
Система уравнений включает 5 уравнений: основное уравнение энергетического баланса (3); уравнения термодинамики (4 -6), уравнение для определения коэффициента полезного действия пластинчатого рекуператора (7):
q1 = q2+ q3, (3)
q1 = суGу (tу – tв) (4)
q2 = сн Gн (tп – tн) (5)
qм = снGн (tу – tн)(6) ηр = q2/ qм , (7)
где qм - количество тепла, теоретически максимально возможного, получаемого приточным воздухом, с помощью разности температур удаляемого (внутреннего) воздуха и наружного воздуха, т.е. соотношением между теплом, полученным в действительности приточным воздухом, и теоретически максимально возможным полученным теплом.
Берем для примера энергоэффективный дом площадью 280 кв.м и вводим ограничения:
+15°C < tу< + 25°C;
-20°C < tн< + 30°C;
+10°C < tп< + 15°C;
+16°C < tв< + 18°C;
100 < Gн < 600 м3/час;
100 < Gу < 600 м3/час
В результате решения системы уравнений (3- 7) получаем целевую функцию для определения критерия оптимизации - коэффициента полезного действия пластинчатого рекуператора:
ηр = (tп – tн)/(tу – tн) → max (8)
Таким образом, полученная оптимизационная задача с целевой функцией (8), уравнениями (3 - 7) и условиями ограничений представляет собой задачу получения максимального коэффициента полезного действия пластинчатого рекуператора при изменении температуры приточного воздуха tп.
Формулируется оптимизационная задача следующим образом: среди множества допустимых управляющих воздействий tп , обладающих тем свойством, что соответствующее решение системы уравнений (3-7) удовлетворяет условиям (ограничениям), найти такие значения tп , которые максимизируют функционал (8).
В результате исследований устанавливаем, что для получения оптимальных режимов работы пластинчатых рекуператоров при низких температурах наружного воздуха и получения высоких значений коэффициента полезного действия, необходим подогрев наружного воздуха перед входом в рекуператор, который приводит к увеличению температуры приточного воздуха tп [9]. С помощью грунтовых теплообменников можно также решить такую проблему односекционных пластинчатых рекуператоров, как образование конденсата. Из-за выпадения конденсата при низких температурах существует опасность замерзания рекуператора и выхода из строя всей вентиляционной системы. Если расчетные значения температуры наружного воздуха ниже -10º С, необходимо, в зависимости от предполагаемой влажности вытяжного воздуха, выбрать установку предварительного подогрева воздуха перед рекуператором, которая обеспечит повышение температуры воздуха на входе в рекуператор, или установку байпаса рекуператора с активной защитой от замерзания. Для подогрева наружного воздуха, поступающего в рекуператор, предлагаем использовать грунтовые теплообменники [10].
На основании разработанной математической модели был определен критерий оптимизации параметров работы пластинчатого рекуператора и установлены оптимальные режимы его работы.
Литература:
1. Краснов С.А., Краснов В.С., Кряклина И.В., Загребельный М.Н., Лисиенков И.Д. Концепция энергоэффективного интеллектуального дома с ВИЭ для различных слоев населения в агломерации мегаполиса // Стратегия развития мегаполиса (некоторые аспекты). Взгляд в 2014 год. Международная конференция. Издательство Информиздат, Москва. 2012. С.48-55.
2. Ивакин Е.К., Вагин А.В. Классификация объектов малоэтажного строительства [Электронный ресурс]// «Инженерный вестник Дона», 2012. № 3. – Режим доступа: http://ivdon.ru/magazine/archive/nly2012/937// (доступ свободный) – Загл. c экрана. – Яз. рус.
3. Магомадова Х.А. Методологические подходы формирования инновационно-инвестиционного механизма средозащитных инноваций в строительном комплексе [Электронный ресурс]// «Инженерный вестник Дона», 2012. № 4 (часть 2) – Режим доступа: http://ivdon.ru/magazine/archive/n4p2y2012/1463// (доступ свободный) – Загл. c экрана. – Яз. рус.
4. Барановский Н.В. Пластинчатые рекуператоры [Текст]/ Н.В. Барановский. -М.: Агропромиздат. 1962.- 210 с.
5. Барон В.Г. Рекуперация тепла в современных системах вентиляции [Текст] // Новости теплоснабжения. –М.: 2006. №6. С. 46-51.
6. Таха, Хемди А. Введение в исследование операций: пер. с англ. М.: Издательский дом «Вильямс», 2001. 912 с.
7. Olesen B.W. A simplified calculation method for checking the indcorclimate// ASHRAE Transactions 98(28). 1983. P. 710-723.
8. Olesen B.Wetal. Thermal comfort in a room heated by different methods// ASHRAE Transactions 86(1). 1980. P. 34-48.
9. Кряклина И.В. Теоретическое обоснование оптимальных режимов работы пластинчатых рекуператоров на основе метода золотого сечения [Текст]// Актуальные проблемы энергетики АПК. Материалы 3 Международной научно-практической конференции. Саратов. СГАУ имени Н.И. Вавилова. 2012. С.127-130.
10. Кряклина И.В. Использование грунтовых теплообменников для повышения энергосбережения рекуперационных систем вентиляции в АПК // Актуальные проблемы науки в АПК. Сборник статей 63-й международной научно-практической конференции. Кострома. КГСХА. 2012. Т2. С. 107-111.