Выбор оптимальных параметров метода сегментации цифровых изображений мокроты
Аннотация
Дата поступления статьи: 22.08.2018В статье рассмотрено применение критериев оценки качества сегментации цифровых изображений мокроты, окрашенной по методу Циля-Нильсена для выбора оптимального параметра «сигма» вейвлет преобразования Mexican Hat. В качестве материала исследования использовались 830 цифровых изображений, полученных при микроскопии мазков мокроты. Для оценки оптимальности подбора значения параметра σ использовались: среднее число объектов, выделенных на изображениях, доля пропущенных кислотоустойчивых микобактерий на изображениях, критерий однородности и 3 комплексных критерия оценки качества сегментации изображений. Проведенный анализ показал, что при увеличении параметра σ происходит незначительное снижение значение критерия однородности. При этом увеличение параметра σ с 2,4 и более согласно комплексным критериям происходит повышение качества сегментации изображений. Таким образом, наиболее оптимальными значениями параметра σ вейвлета Mexican Hat для сегментации цифровых изображений мокроты, окрашенной по методу Циля-Нильсена, являются значения в интервале от 2,90 до 3,09.
Ключевые слова: метод Циля-Нильсена, сегментация изображений, критерии оценки качества, вейвлет преобразование, Mexican Hat
05.11.17 - Приборы, системы и изделия медицинского назначения
05.13.01 - Системный анализ, управление и обработка информации (по отраслям)
`