Применение и сравнение эволюционных алгоритмов в рамках задачи обучения с подкреплением для неустойчивых систем
Аннотация
Дата поступления статьи: 17.04.2023Целью данной работы является реализация и сравнение генетических алгоритмов в рамках задачи обучения с подкреплением для управления неустойчивыми системами. Неустойчивой системой будет выступать объект CartPole Open AI GYM, который моделирует балансирование стержня, шарнирно-закрепленного на тележке, которая движется влево и вправо. Задачей является удержание стержня в вертикальном положении максимально продолжительное время. Управление данным объектом реализовано с помощью двух методов обучения: нейроэволюционный алгоритм (NEAT) и многослойный перцептрон с применение генетических алгоритмов (DEAP).
Ключевые слова: машинное обучение, нереволюционные алгоритм, генетические алгоритмы, обучение с подкреплением, нейронные сети
2.3.3 - Автоматизация и управление технологическими процессами и производствами
.