×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Mathematical modeling of non - stationary cooling 3d-printed multilayer objects

Abstract

Mathematical modeling of non - stationary cooling 3d-printed multilayer objects

Tikhomirov S.A., Tikhomirov K.S.

Incoming article date: 06.06.2022

Temperature regimes of heating and cooling in three-dimensional printing are the most significant part of the technological solution in the production of products in any industry: from printing parts for aviation and rocket engineering to the construction of buildings or the manufacture of prosthetic human bones. The paper considers a simple and reliable method for obtaining calculated values of non-stationary temperatures and heat fluxes during layer-by-layer printing of products with various thermophysical properties and imperfect contact between layers, which does not require special software shells and large machine resources for calculations.

Keywords: non-stationary heat transfer, multilayer printing of products, additive manufacturing, 3D printing of products, heating and cooling of multilayer products, layer-by-layer deposition, optimization of the temperature regime of printing products