×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Overview: Advances and Challenges in Analyzing and Diagnosing Product Defects by Digital Methods

    The article provides an overview of the analysis and diagnosis of product surface defects, evaluated using digital image processing. The search for scientific publications was carried out mainly in the Scopus and RSCI scientometric bases for the period 2019-2023. The purpose of this article is to determine the best methods for assessing the destruction of materials using digital images. The main methods of processing and analyzing digital images are considered. The perspective of unification of segmentation modes by digital image acquisition sources and combining images from various recording sources to obtain objective information on the nature of material destruction is shown. To reduce the time for assessing the degree of destruction of materials, it is proposed to gradually use the methods of segmentation, filtering digital images of defects in metal products with subsequent calculation by a neural network.

    Keywords: defect, control, digital image, neural network.

  • The impact of alkaline treatment on the structure and morphology of cellulose

    The impact of the alkali NaOH on the structure and morphology of cellulose has been considered. Using X-ray spectroscopic microanalysis and electron microscopy, it has been determined that treatment of wood cellulose with aqueous solutions of NaOH allows to reduce the content of lignin in cellulose and significantly improve the topography of the fibers. A comparative analysis of alkali cellulose samples was conducted, obtained during treatment with NaOH solutions of 13.7% and 12.3% concentration for a process duration of 5.5 hours, at a temperature of 124 °C. It has been established that at the considered concentrations of NaOH, approximately ~75% and ~50% of lignin is removed from the original cellulose, respectively. The results of infrared spectroscopy indicate an increase in the amorphization of alkali cellulose. Alkali cellulose, formed at a NaOH concentration of 13.7%, exhibits superior morphological uniformity and a lower lignin content.

    Keywords: wood cellulose, chemical treatment, alkalinity, lignin, X-ray spectral microanalysis, electron microscopy