×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Analysis of existing structural solutions for in-tube inspection robots: selection of the optimal type of movement and chassis for 3D scanning of the weld relief in large diameter welded straight-seam pipes using a laser triangulation sensor

    This article provides an overview of existing structural solutions for in-line robots designed for inspection work. The main attention is paid to the analysis of various motion mechanisms and chassis types used in such robots, as well as to the identification of their advantages and disadvantages in relation to the task of scanning a longitudinal weld. Such types of robots as tracked, wheeled, helical and those that move under the influence of pressure inside the pipe are considered. Special attention is paid to the problem of ensuring stable and accurate movement of the robot along the weld, minimizing lateral displacements and choosing the optimal positioning system. Based on the analysis, recommendations are offered for choosing the most appropriate type of motion and chassis to perform the task of constructing a 3D model of a weld using a laser triangulation sensor (hereinafter referred to as LTD).

    Keywords: in-line work, inspection work, 3D scanning, welds, structural solutions, types of movement, chassis, crawler robots, wheeled robots, screw robots, longitudinal welds, laser triangulation sensor

  • Analysis and prospects for the application of automated technologies and laser triangulation for visual inspection of weld quality in the production of large-diameter longitudinally welded pipes

    The article presents an analysis of modern methods and prospects for the application of automated technologies and laser triangulation for visual inspection of weld quality in the production of large-diameter longitudinally welded pipes. A review of scientific and patent publications over the past 5 years was conducted using databases such as Google Scholar, Scopus, Web of Science, eLibrary, and Google Patents. Key aspects such as the use of laser triangulation sensors (hereafter referred to as LTS) for assessing the geometric parameters of welds and the integration of machine learning methods to enhance inspection accuracy and automation were considered. The study shows that the application of LTS in combination with machine learning methods ensures high accuracy in evaluating weld quality, which is crucial for ensuring the reliability of pipelines in various industries. Based on the conducted analysis, recommendations for developing an automated system for visual inspection of welds on production lines have been identified.

    Keywords: laser triangulation, visual inspection, welds, automated technologies, machine learning, quality control, large-diameter welded pipes