Sensitive element of CO sensor was created by pulsed laser deposition and it was integrated in device of surface acoustic waves (SAW). Photoluminescence was used to control of oxygen-related defects of ZnO nanorod arrays. It is shown that the deficiency of oxygen in zinc oxide nanorods can be increased by change in temperature synthesis of nanorods of 850 to 915 ° C with a high argon pressure, and control of the deficiency of oxygen by increasing the ratio of the intensity of radiation in the visible region of the luminescence intensity in the ultraviolet region of the spectrum can help to increase the sensitivity of CO.
Keywords: ZnO nanorods, photoluminescence, CO sensor
Structure of surface acoustic waves(SAW) of CO sensor was developed. SAW sensor include transceiving IDT and catoptric IDT, which is loaded on the impedance of ZnO nanorods. Peak of reflection SAW from IDT clearly observed as result Fourier transformation of time function of pulsed response. IDT loaded on resistance paralleled ZnO nanorods, which depends on the concentration of CO.
Keywords: ZnO nanorods, device on SAW, CO sensor