The paper presents a systematic review of recent advances in the development of polymer-matrix nanocomposites containing fibrous (sepiolite-palygorskite group) and non-swelling (kaolinite-serpentine group) clay minerals, as well as their modified forms obtained using surface reactions with organic and inorganic substances. An analysis of scientific trends and the current status of research in this area has been carried out, with particular emphasis on the influence of the types and forms of the considered mineral fillers on the properties of nanocomposites for various applications.
Keywords: polymer nanocomposites, clay minerals, kaolinite, halloysite, sepiolite, palygorskite
Existing methods for assessing the plasticity of soils are labour-intensive, and yield the results of low quality. Due to the importance of this parameter for determining the strength of road beds when designing the construction of railways and highways, the development of new efficient methods for its reliable determination is of great importance. In this paper, we propose a method for solving this problem based on the correlation of mechanical and electrical properties of cohesive soils by the example of soil-forming minerals of montmorillonite and kaolinite
Keywords: layered aluminum silicates, soil plasticity, plastic and liquid limits, absorption, swelling, electrical measurements, correlation of mechanical and electrical properties