ivdon3@bk.ru
В статье рассматриваются подходы к извлечению ассоциативных правил для систем гибридного искусственного интеллекта. Рассматривается известный алгоритм извлечения правил Apriori, который может применяться для обработки больших массивов количественных значений. В статье приводятся современные методы интеллектуального анализа нечетких данных: с предопределенными функциями принадлежности, алгоритмами на основе Apriori, которые обеспечивают легкий способ анализа и описания правил нечеткой ассоциации. Для работы с большими данными особенно подходящими являются алгоритмы на основе FP-деревьев. Подробно рассмотрены четыре типа нечетких генетических алгоритмов, позволяющих найти как функции принадлежности, так и нечеткие ассоциативные правила.
Ключевые слова: нечетко-генетические системы, гибридные интеллектуальные системы, ассоциативные правила, извлечение данных