×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • OPTICAL AND ELECTRICAL PARAMETERS OF HETEROSTRUCTURES IN THE PHYSICS OF SEMICONDUCTOR MATERIALS: MODELING AND EXPERIMENT

    This paper contains an analysis of the modeling results of the electrophysical parameters of light-emitting GaInAsSb / GaSb solid solutions. The model takes into account three types of current - drift, thermionic emission and tunneling through potential barriers. In the work, graphs of radiation power versus current strength and current-voltage characteristic (IVC) of the LED device are plotted. Modeling indicators based on the features of the band structure of semiconductor systems have been built. Experimental results were discussed, which showed satisfactory agreement with the data obtained on the basis of calculations.

    Keywords: solid solutions, Sim Windows 1,5, radiating structures, currents limited by space charge, electrophysical parameters

  • Еntropy analysis of complex systems as a tool of engineering activity

    Developed approaches to measure the structural organization of systems. The concept of entropy expands and acts as an asymmetric criterion for the systems complexity. The necessity of a nonequilibrium approach to describing the interaction of physical structures and the possibility of interpreting entropy as a measure of the structural diversity of systems is shown. The validity of this approach is confirmed by a number of examples of the evolution of different systems, the structural distributions of the elements of which play an important role in modeling physical and physicochemical processes. Theoretical aspects are based on the fundamental work of D. Gibbs and L. Boltzman. The information content of the entropy concept correlates with the well-known “complementary” factor - coentropy. In this work, the evolution curves of complex systems are constructed as dependencies on statistical diversity. The symmetry of the functions of the density of entropy and coentropy with respect to the bifurcation points is discussed. It is shown that two-phase systems “liquid – vapor”, “crystal – melt” are characterized by inversion of evolutionary trajectories.

    Keywords: entropy, negentropy, koentropy, orderliness measure, structural variety, normal distribution, dissipative systems, asymmetric structure, orthogonal distributions, dependence inversion

  • The structure of epitaxial layers of narrow-gap solid solutions and compensation of defects

    The paper contains an analysis of the results of experiments on obtaining radiative structures based on gallium antimonide, formed by the method of thermal melt migration in a semiconductor matrix. The epitaxial process modes within the selected range were optimized for such parameters as the wavelength corresponding to the fundamental transition, a small lattice discrepancy, a small discrepancy in the coefficients of thermal expansion of the growing TP and the matrix. An original effect is described - an increase in the solubility of the Bi content in solid solutions, isoperiodic binary compounds A3B5 under conditions of a gradient temperature field. This effect allows a wide variation in the optical parameters of the element base of instruments based on solid solutions of GaSbBi / GaSb. The mechanisms of the generation of dislocations in a crystallized solid solution and the features of electrophysical and photoelectric parameters are analyzed. A structural solution of a light-emitting diode with strip geometry is proposed.

    Keywords: solid solutions, recrystallization, gradient liquid-phase epitaxy, thermomigration, indium antimonide-bismuthide, melt thickness, temperature gradient, components, growth coordinate, epitaxial layers

  • Physical properties of multicomponent narrow-gap solid solutions with mesostructure authors

    In this paper, the modeling of phase equilibria in multicomponent systems of A3B5 compounds was carried out and the compositions of the liquid phase equilibrated with a given solid solution were calculated. A model of excess thermodynamic functions is used, which takes into account the formation of associates in the melt near the solidus temperatures. The developed algorithm allows solving a direct problem (in which the input parameters are the growth temperature of the layers and the composition of the solid phase corresponding to the expected instrument characteristics) and the inverse problem (the growth temperature and composition of the solid solution are sought for the given liquid phase). The limiting concentrations of the alloying components, arsenic and bismuth, are determined. The structural and electrophysical characteristics of multicomponent semiconductor A3B5 heterosystems are discussed, the solid solutions of which crystallize from the liquid phase in a gradient thermal field. The mechanism for introducing impurities into the lattice of epitaxial layers of multicomponent solid solutions is described for the first time. With an increase in the thickness of the crystallizable film, the thermodynamically equilibrium substitution by antimony bismuth atoms is completed and the introduction of Bi atoms into the interstices takes place. The interaction of neighboring atoms with the valence electron shells of Bi becomes more symmetrical, which causes an increase in concentration. The concentration of film defects near its rear surface also increases. The obtained values of electrophysical parameters make it possible to draw a conclusion about the instrumental suitability of the materials under study.

    Keywords: solid solutions, mesostructure, antimonide, alloying, liquid phase, phase transformations, binary compounds, associates, lattice constant, multicomponent systems

  • Physical properties of light-emitting sold solutions, isoperiodic gallium antimonide

    The paper contains an analysis of the results of experiments on obtaining radiative structures based on gallium antimonide, formed by the method of thermal melt migration in a semiconductor matrix. The epitaxial process modes within the selected range were optimized for such parameters as the wavelength corresponding to the fundamental transition, a small lattice discrepancy, a small discrepancy in the coefficients of thermal expansion of the growing TP and the matrix. An original effect is described - an increase in the solubility of the Bi content in solid solutions, isoperiodic binary compounds A3B5 under conditions of a gradient temperature field. This effect allows a wide variation in the optical parameters of the element base of instruments based on solid solutions of GaSbBi / GaSb. The mechanisms of the generation of dislocations in a crystallized solid solution and the features of electrophysical and photoelectric parameters are analyzed. A structural solution of a light-emitting diode with strip geometry is proposed.

    Keywords: thermomigration, solid solutions, gradient epitaxy, diode with fine mes, gallium antimonide, fundamental transition, photoluminescence spectra