The structure of synthesized ferroelectric samples of PbSc0.5Ta0.5O3 after mechanoactivation were studied by means of X-ray absorption spectroscopy(XANES), X-ray diffraction (XRD) and scanning electron microscopy (SEM). Based on the combination of effective experimental methods and computer modeling of theoretical X-ray absorption spectra near the L3 - edge of tantalum and lead was studied character of structural distortions for investigated samples after mechanoactivation.
Keywords: Ferroelectrics materials, mechanoactivation, XANES, defects
Ceramic materials based on solid solutions La2-xSrxMO4, where M is Ni, Fe, Co, Cu, x = 0, 2 with layered K2NiF4 structure (structure of Ruddlesden-Popper) have been synthesized and investigated. The correlation of dielectric properties with a normalized bond lengths of the metal-oxygen has been observed. The existence of nickel atoms in the 2+ oxidation state for nickelates has been shown.
Keywords: solid solutions, colossal dielectric constant, resistivity, x-ray diffraction, dielectric spectrum, XANES, low-resistivity semiconductors, the activation energy, the distortion of the coordination polyhedra, oxygen non-stoichiometry
Fe-doped AlN nanorods were studied by means of x-ray absorption spectroscopy above the Fe K- and L2,3- edges. Theoretical simulations of the x-ray absorption spectra show that Fe atoms mainly substitute Al. A minor fraction of Fe interstitials or Fe-Al-N ternary alloy can be identified as well. Bader’s AIM analysis predicts that neutral substitutional FeAl defect is in 2+ charge state, though Al in pure AlN is in 3+ charge state. Fe L2,3 absorption spectra and photoluminescence data indicate the coexistence of Fe2+/Fe3+ in AlN:Fe nanorods so different charge states of substitutional FeAl should co-exist.
Keywords: diversification of management, production diversification, financial and economic purposes of a diversification, technological purposes of ensuring flexibility of production
In this paper we study of the local atomic and electronic structure of nanostructured condensed material for rechargeable current sources on the basis of 15mas.%V2O5/Fe/LiF nanocomposite within charge-discharge cycle. Principle component analysis (PCA) of the series of Fe K-edge spectra collected during 1 st charge showing the concentrations of the components Fe, FeF2 and V[FeV]O4. We found the changes in the V oxidation state from the analysis of the experimental Fe K- and V K- XANES spectra. Total and partial density of states of components are presented.
Keywords: nanostructured materials for rechargeable current sources, dynamics of local atomic and electronic structures, XANES, DFT
In the present work we report on the study of local atomic and electronic structure of gold nanoparticles funnctionalised by thiol and amine containing long-chain ligands. The study of nanoscale atomic structure is performed by means of X-ray absorption spectroscopy (XANES: X-ray Absorption Near-Edge Structure) and computer simulation. In consequence of the experimantally obtained data analysis and computer simulation it was obtained that strong bonding takes place when 11-mercaptoundecanoic acid is bound to the gold nanoparticles surface, forming a chemical bond Au-S 0.25 nm in length. Weaker bonding is observed when forming bond between dodecylamine and gold nanoparticles surface atom resulting in Au-N bond 0.23 nm in length. Supplementary XANES spectra analysis by means of density functional theory reveals the nature of formation of the investigated nanoscale structure.
Keywords: nanoscale structure of matter, X-ray absorption spectroscopy, XANES, density functional theory, nanoparticles functionalisation
In this paper we study the dynamics of the local atomic structure of new nanostructured condensed material for for rechargeable current sources on the basis of 15mas.%V2O5/Fe/LiF nanocomposite within charge-discharge cycle on the basis of X-ray diffraction (XRD), X-ray absorption spectroscopy (XANES) and of computer simulation. The analysis of the experimental data obtained during the first charge cycle reveals the transformation of iron to more than 50% of iron fluoride (II) , Li ions intercalate into the structure of amorphous V2O5 forming LiVO2 compound.
Keywords: diversification of management, production diversification, financial and economic purposes of a diversification, technological purposes of ensuring flexibility of production
Combined method which allows analyzing parameters of the nanoscale atomic and electronic structure of materials relying on three different methods (x-ray absorption spectroscopy (XAFS), x-ray diffraction (XRD) and Raman spectroscopy) was developed. The method was applied for the study of nickel oxide nanoparticles, which serve as an efficient catalyst for the artificial photosynthesis process.
Keywords: solar energy, artificial photosynthesis, NiO, Raman, x-ray diffraction, XAFS
We have carried out the analysis on the scientific and technological literature on methods of calculation and analysis of the x-ray diffraction, x-ray absorption and Raman spectra used to analyse the structure of the materials for hydrogen storage under realistic operating conditions. The simulations were carried out for the series of small palladium nanoclusters with embedded hydrogen. Multiscale computer modelling was used to simulate the dynamics of structure of the materials during charge/discharge phases.
Keywords: hydrogen storage, XANES, x-ray diffraction, Raman scattering, fuel cell